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Abstract

I investigate the extent to which modern dynamic stochastic general equilibrium
(DSGE) models can produce macroeconomic and labor market dynamics in response
to a financial crisis that are consistent with the experience of the Great Recession.
Using the methods of Boivin and Giannoni (2006) and Kryshko (2011), I estimate two
DSGE models in a data-rich environment. The two models estimated in this paper
include close variations of the Smets & Wouters (2003, 2007) New Keynesian model
and the FRBNY (Del Negro et al. 2013) model that augments the Smets & Wouters
model with a financial accelerator. I find the model with a financial accelerator that
is estimated in a data-rich environment is able to significantly out-forecast modern
DSGE models not estimated in a data-rich environment and the Survey of Professional
Forecasters (SPF) in regard to core macroeconomic growth variables and many labor
and financial metrics including the unemployment rate, total number of employees by
sector and business loans.
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1 Introduction

Modern day macroeconomic theory has greatly leaned on structural dynamic stochastic

general equilibrium (DSGE) modeling. These models give policymakers a workshop in which

co-movements of aggregate macroeconomic time series can be evaluated over the business

cycle. The Smets and Wouters (2003, 2007) model (henceforth, SW) in particular is widely

considered the “workhorse” of the DSGE literature. However, Del Negro and Schorfheide

(2013) have found this model to be limited in identifying the financial crisis for most of 2008,

including the 4th quarter of 2008, when the crisis was in full swing.

A model that was better equipped to identify the Great Recession a few months earlier

than the SW model is a variant of the SW model with financial frictions (henceforth, SWFF).

The SWFF model introduces a Bernanke, Gertler and Gilchrist (1999) financial accelerator

mechanism and closely follows the entrepreneurial sector of the FRBNY model outlined by

Del Negro et al. (2013). Del Negro and Schorfheide (2013) compared the SW and SWFF

models’ forecasting performance over the past two decades when the models were estimated

under a standard set of seven or eight macroeconomic data series. They found that during the

Great Recession the modified SWFF model was better at forecasting output and inflation

when compared to the original SW model, however, this forecast model ranking was not

consistent in time frames outside of the Great Recession.

In this paper, I compare the forecasting performance of both the SW and SWFF DSGE

models when they are estimated in a data-rich environment using the techniques of Boivin

and Giannoni (2006) and Kryshko (2011). To my knowledge, this is the first time the SWFF

model has been estimated in this fashion. Given the construction of traditional DSGE

model estimation (henceforth, DSGE-Reg) Del Negro and Schorfheide (2013) were only able

to compare the two models along a few key macroeconomic series. However, the estimation

technique of Boivin and Giannoni (henceforth, DSGE-DFM) allows DSGE models to be

estimated using a large data vector of macroeconomic time series and it provides an avenue

through which these two models can be used to study the dynamics of such series as the

unemployment rate, unemployment duration and employees by sector; even when no such

series are directly incorporated into the structural model. Instead, the series that are not
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directly incorporated inside the DSGE model are allowed to load on economic variables and

structural processes that are inside the DSGE model.

In addition, the DSGE-DFM estimation technique may provide different estimates of

some structural parameters in the model that could produce better forecasts of variables

that are directly modeled inside the DSGE model, such as GDP, consumption, investment

growth, inflation and interest rates.

After conducting the DSGE-DFM and DSGE-Reg estimations on both the SW and

SWFF models, I compare the forecasts of the four models, SW-Reg, SW-DFM, SWFF-Reg,

SWFF-DFM. Comparing these four models helps answer three important questions. First,

do DSGE-DFM models help in forecasting core macroeconomic variables before and during

the Great Recession when compared to DSGE-Reg models? Second, when I compare the

SW-DFM and SWFF-DFM models do we see similar results for other key macroeconomic

variables not directly incorporated in either model as Del Negro and Schorfheide (2013)

found for the variables of output growth and inflation? Third, does DSGE-DFM estimation

help eliminate the time varying forecast dominance of the SW and SWFF models?

I first closely examine the period surrounding the Great Recession and its recovery and

find compelling evidence that the answer to the first two questions is yes. I find that both

DSGE-DFM models are better equipped to replicate the dynamics of the Great Recession

than their DSGE-Reg counterparts are, when it comes to output, consumption, hours worked

and investment. In addition, the SWFF-DFM model is able to foresee the downturn in output

and investment as early as February of 2008. I also find that the SWFF-DFM model was able

to foresee the decrease in the number of overall jobs, number of jobs in the manufacturing

and construction sectors and the rise in the unemployment rate beginning in the fall of 2008.

When comparing the four models along a wider time frame horizon (1998-2011), I find

that both DSGE-DFM models predict the dynamics associated with the core macroeconomic

growth variables more accurately when compared to the two DSGE-Reg models. I also find

that many of the in-sample forecasts generated by the SW-DFM and SWFF-DFM models

do not differ much in tranquil economic times. It is only in times of financial volatility that I

see the simulated paths from the two DSGE-DFM models begin to differ. As a result of this

the SWFF-DFM model out ranks the SW-DFM model in terms of forecasting for the entire
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sample period not just in times of financial volatility as was the case with the SWFF-Reg

and SW-Reg models as illustrated in Del Negro and Schorfheide (2013).

These results suggest that the SWFF model estimated in a data-rich environment (SWFF-

DFM) would have predicted the labor market and production dynamics associated with the

Great Recession and its proceeding recovery. In addition to generating the most accurate

dynamics, the SWFF-DFM model also has similar or smaller root mean squared errors

(henceforth, RMSEs) when compared to the Survey of Professional Forecasters’ (henceforth,

SPF) forecasts of output, consumption and investment growth. This implies the SWFF-

DFM not only wins the horserace amongst the four models but that it should also be taken

seriously as a forecasting and policy analysis tool.

Lastly, I examine both DSGE-DFM models for clues on why they could have foreseen the

Great Recession earlier than their DSGE-Reg counterparts. I conduct an historical decom-

position of the SWFF model and find that the Great Recession can mainly be attributed to

negative investment, negative preference and negative finance shocks (corresponding to an

increased spread between the risk and risk-free interest rates inside the model). When I look

at the impulse response functions (IRFs) generated for the SWFF-Reg and SWFF-DFM

models, I find that the different structural parameter estimates help generate more persis-

tent declines in output from these types of shocks and I see that the investment-consumption

tradeoff that can occur from these shocks diminishes in the SWFF-DFM model. This dimin-

ishing tradeoff results in slower recoveries in both real investment and real consumption and

thus, a slower recovery in real GDP, as was seen with the recovery from the Great Recession.

The macro-financial time series I use to estimate both the SW and SWFF models is a

near replica of the Stock and Watson (2003) dataset used in estimating their dynamic factor

model. It includes labor and financial data series that are usually not utilized in DSGE-Reg

estimation. These include employment by sector, stock price indexes, housing starts and

many price and wage indexes beyond the standard CPI index and GDP deflator.

This DSGE-DFM method has been most recently used by Gali et al. (2012), Brave et

al. (2012), Justiniano et al. (2013), and Barsky et al. (2014); who have all expanded the

observable vector to improve the identification of unobservable and observable states and

thus improve the estimation of the structural parameters. Gali et al. (2012) and Justiniano
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et al. (2013) promotes the use of multiple series for the measurement of wages, while Brave

et al. (2012) and Barsky et al. (2014) uses multiple measures of inflation to estimate their

perspective models. However, these papers used the method to allow for multiple data

variables measuring the same model concepts and I will use the methodology to allow a

large vector of macro-financial data to load on all DSGE model states.

In addition to these papers, my paper also fits into the structural DSGE literature of

labor market dynamics around the Great Recession. Gali et al. (2012), Christiano et al.

(2015), Christiano et al. (2016) incorporate a more advanced labor market in their perspec-

tive DSGE models than either the SW or SWFF model. The models of Gali et al. (2012)

and Christiano et al. (2015) are able to simulate and/or forecast the dynamics of employ-

ment, unemployment and other aggregate labor market statistics quite nicely, as does the

SWFF-DFM model of this paper. However, the SWFF-DFM model in this paper is able

to also capture the labor market and output dynamics of less aggregate statistics, such as

employment and production by sector.

The remainder of this paper is structured as follows. Section 2 briefly explains the

features of each DSGE model and outlines the estimation technique used to incorporate the

large set of economic and financial series. Also included in this section is a description of

the priors for the state-space and structural parameters as well as an overview of the data

series. Section 3 presents the simulated output growth paths of all four models around the

Great Recession and the paths for both the SW-DFM and SWFF-DFM models for various

production growth, labor, output and finance series around the trough and recovery of the

Great Recession. Also included in this section are Diebold Mariano test statistics of out-of-

sample forecasts for all four models around the 1998-2011 time frame. Section 4 discusses

the important dynamics of the SWFF-DFM model and discusses why the SWFF-DFM was

able to predict a slow recovery in employment and production markets. Section 5 concludes

and discusses future extensions.
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2 The DSGE Models and Estimation Technique

I consider two DSGE models in this paper, the first model is based on the FRBNY model

outlined by Del Negro et al. (2013). This model is an extension of the Smets and Wouters

(2003, 2007) New Keynesian model with the addition of a credit market with frictions that

closely follows the financial accelerator model created by Bernanke, Gertler and Gilchrist

(1999). The second model has no credit channel and closely follows the Smets and Wouters

(2003) model. This model will be referred to as SW, while the model with financial frictions

will be referred to as SWFF.

In the second part of this section, I present the steps needed to generate Bayesian esti-

mates of the parameters of the linearized models. For the Bayesian estimation, I adopt two

techniques, the first being the standard Random Walk Metropolis-Hasting algorithm whose

results will be referred to as SW-Reg and SWFF-Reg for the respective models. The second

is a data-rich estimation method proposed by Boivin and Giannoni (2006) whose results will

be referred to as SW-DFM and SWFF-DFM for the respective models.

2.1 General Outline of DSGE Models

The SWFF model involves a number of exogenous shocks, economic agents, and mar-

ket frictions. The agents include households, intermediate and wholesale firms, banks, en-

trepreneurs, capital producers, employment agencies, and government agencies. In all, the

SWFF model has price, wage and financial frictions, habit persistence in consumption, in-

vestment adjustment costs, capital utilization costs and eight exogenous shocks. The SW

model is identical to the SWFF model without the entrepreneur and banking sectors. In-

stead, households own the capital, decide the utilization rate and rent it to intermediate

firms. Further, the SW model does not have any financial frictions or financial risk shocks.

In Appendix A, I present the linearized equations for both models around their respective

steady states that I use to produce my results.
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2.2 Regular DSGE Estimation

The state space representation of the solved model consists of a transition equation, which

is calculated by solving the linearized system of the given model one wishes to evaluate for

a given set of structural model parameters (θ):

St = G(θ)St−1 +H(θ)vt where vt ∼ NID(0, I) (2.1)

and the measurement equation:

Xreg
t = ΛSt (2.2)

Here Xreg
t are the economic data sets and Λ is a matrix matching the observed data to the

definitions of the model’s state variables St.

The description of the data sets and individual elements of Λ for the regular estimation

technique can be found in Appendix B. 1

2.3 DSGE-DFM Estimation

Bayesian estimation of a DSGE model in a data-rich environment incorporates the state

space model discussed above with a few modifications. The assumption that all relevant

information for the estimation is summarized by a relatively small number of data sets needs

to be met in order for accurate estimates and forecasts to be obtained when a DSGE model

is estimated as described in Section 2.2. However, the development of Dynamic Factor

Models proposed by Sargent and Sims (1977) and further advanced by the works of Stock

and Watson (1989, 2003, 2009, 2011) have shown that large data sets can hold valuable

information in identifying unobserved common factors of the economy.

Further, the abundance of data series that can stand in as a measurable metric of a

particular economic variable can be large as well, for example, inflation can be measured in

multiple data sets including CPI, PCE, GDP deflator and other series. The econometrician’s

choice of which data set(s) to use in the estimation process can have an impact on the results

as shown by Guerron-Quintana (2010).

1For more detail on Bayesian DSGE estimation techniques please see An and Schorfheide (2007).
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The set up for DSGE-DFM estimation is characterized by equations (2.3)-(2.5).

St = G(θ)St−1 +H(θ)vt where vt ∼ NID(0, Im) (2.3)

Xt = ΛSt + et (2.4)

et = Ψet−1 + εt where εt ∼ NID(0, R) (2.5)

Here et follows an AR(1) process and is often referred to as measurement error. The matrix

X is J x T where J is the number of data series used in estimation and T is the number

of observables for each series. The Matrix Λ is now no longer assumed to be known by the

econometrician, but instead is estimated within the MCMC routine. The matrices Ψ and R

that govern the measurement error’s stationary processes for each series are assumed to be

diagonal and are also estimated within the MCMC routine.

The measurement equation (2.4) has the following structure:



Output#1

Output#2

Inflation#1

Inflation#2
...

−−−−−−

[Housing Market]

[Labor Market]

[Output Components]

[Financial Market]

[Investment]

[Price/Wage Indexes]

[Other]



=



1 0 ... 0

λY1 0 ... 0

0 1 ... 0

0 λπ2 ... 0

−− −−−− −−− −−

[λH1 ] [λH2 ] ... [λHn ]

[λL1 ] [λL2 ] ... [λLn ]
...

... ...
...




Ŷt

π̂t
...

εft

+


et,1

et,2
...

et,J



where Xt is partitioned into core series and non-core series separated by the dashed line.

The core series are series that are only allowed to load on one particular variable of the
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state vector St to which there is a known sole relationship between series and state. (For

instance, GDP to Y ) Further, the factor loading coefficient for the first series of each core

variable that corresponds to a particular known state is assumed to be perfectly tight, this

is represented by the 1’s in the Λ matrix. This anchors the estimated states of the DSGE

model and ensures that they don’t drift too far away from their theoretical foundation. I

check to see if indeed this is the case for the SWFF-DFM model in Appendix C.

The non-core series consist of the remaining 97 data sets not in the core series and are

grouped into eight subgroups. These series are allowed to “load” on all time t states in the

state vector. Non-core series may have up to n (where n is the number of elements in St)

non-zero elements for their corresponding row in Λ unlike the core series whose corresponding

row in Λ may only have one non-zero element.

Following the work of Boivin and Giannoni (2006) and Kryshko (2011), a Metropolis-

within-Gibbs algorithm is used to estimate the state space parameters Γ = [Λ, Ψ, R] and

the structural DSGE parameters θ. The likelihood functions of the DSGE-DFM models

appear to have many peaks and cliffs that can cause the MCMC algorithm to get “stuck.”

To make sure the algorithm explores the entirety of the parameter space, I have implemented

an adaptive element into the Metropolis step of the algorithm along the lines of Roberts and

Rosenthal’s (2009) adaptive within Gibbs example. The adaptive Metropolis-within-Gibbs

algorithm used follows the following steps:

1. Specify Initial values of θ(0), and Γ(0), Γ = {Λ, Ψ, R}

2. Repeat for g=1...G

2.1 Solve the DSGE model numerically and obtain G(θ(g−1)) and H(θ(g−1))

2.2 Draw from p(Γ|G(θ(g−1)), H(θ(g−1));X1:T )

2.2.1 Generate unobserved states S1:T,(g) from p(ST |Γ(g−1), G(θ(g−1)), H(θ(g−1));X1:T )

using the Carter-Kohn forward-backward algorithm

2.2.2 Generate state-space parameters Γ(g) from p(Γ|S1:T,(g);X1:T ) by drawing from

a set of known conditional densities [R|Λ,Ψ;S1:T,(g)], [Λ|R,Ψ;S1:T,(g)], [Ψ|Λ, R;S1:T,(g)].

2.3 Draw DSGE parameters θ(g) from p(θ|Γ;X1:T ) using adaptive Metropolis Hastings
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2.3.1 Propose θ∗ = θ(g−1) + c̄ ε` where ε` ∼ NID(0,Σ−1)

2.3.2 Calculate P (X1:T |θ∗,Γ(g)) using the Kalman Filter

2.3.3 Calculate the acceptance probability ω

ω = min

{
P (X1:T |θ∗,Γ(g))P (θ∗)

P (X1:T |θ(g−1),Γ(g))P (θ(g−1))
, 1

}

2.3.4 θ(g) = θ∗ with probability ω and θ(g) = θ(g−1) with probability (1− ω)

2.4 Calculate acceptance rate of proposed θ for 1 to g draws. If the acceptance rate is

lower than target acceptance rate decrease c̄ by w (iff c̄ > w). If acceptance rate is

greater than target acceptance rate increase c̄ by w. This target acceptance rate

adaption can be implemented every n iterations of g. In addition the condition

w → 0 as g →∞ must be satisfied

3. Return {θ(g), Γ(g)}Gg=1

A few comments are in order. First, regarding step 2.2 which is the Gibbs portion of the

algorithm. This step uses the Carter-Kohn (1994) algorithm which first requires a forward

pass of the Kalman filter to collect the generated states, S, and their corresponding cov/var

matrices, P . The backward pass of the algorithm then smooths out the estimated states

using both S and P from the forward pass.2 Step 2.2.2 then performs line-by-line OLS for

each series in X given the generated states S1:T . With the use of the proper conjugate priors

the distributions of step 2.2.2 are known using the approach of Chib and Greenberg (1994).

The algorithm must first be initialized with θ(0), Γ(0) and Σ. The values of θ(0) are

retrieved by taking the mean of P (θ|Xreg) when estimated as described in Section 2.2. Once

θ(0) is obtained it is then used to calculate S1:T,(0). The estimated states are then used to

run line-by-line OLS for each series in X to back out initial values of Γ(0). Σ−1 is the inverse

Hessian of the DSGE model evaluated at its posterior mode under regular estimation.

The applied algorithm is based on 500,000 draws (2 parallel chains of 250,000 draws

discarding the initial burn-in period of 75,000 iterations). The calibrations regarding the

2The backwards pass draws states S using a cov/var matrix that is a transformation of the P matrix. It
is necessary that P be a symmetric and positive semi-definite matrix. However, it is sometimes necessary to
computationally transform the P matrix using the procedure outlined by Rebonato (1999).
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adaptive step include the acceptance target rate which is set at 27%, an initial c̄ which is set

to .1, the adaptive jump size w which is set at .0053 and an adjustment rate n which is set

at 25. The adjustment rate n determines how many iterations take place between changing

c̄ as described in step 2.4.

2.4 Data and Parameter Priors

To estimate both the SW and SWFF models in a data-rich environment a total of 97

quarterly data series are used4. These series cover the time period of 1984Q2 to 2011Q4.

The complete set of series encompasses many of the economic and financial series used by

Stock and Watson (2003) and Kryshko (2011). The evaluation window of the data series is

significant for multiple reasons. First, Kim and Nelson (1999) have argued that a structural

break in economic growth volatility occurred in 1984Q1. Further, Lubik and Schorfheide

(2004) assert that it was not until the early 1980’s that monetary policy of the Taylor-rule

form was consistent with a determinate equilibrium.

The SWFF-DFM (SW-DFM) estimation consists of 17 (15) core series and 80 (82) non-

core series. The core series for both models include three measures each of GDP, inflation,

employment and nominal interest rates. Also included in the core series are real consumption

and investment expenditures and hourly wages. In addition, the core series for the SWFF-

DFM model include 2 measures of the interest rate spread. The series that hold a perfectly

tight loading factor are the 8 (7) series used in regular estimation of each model. These

include real per capita GDP, the GDP price deflator, per capita real consumption and

private investment expenditures, real average hourly wage, hours worked, the annualized

federal funds rate and the quarterly spread between BAA corporate bond yields to the 10

year Treasury bond yield. All per capita variables are calculated using the adult population

of 16 years and older. These series are either demeaned, linearly detrended log level or log

first differenced and demeaned.

The non-core series are grouped into eight categories. The first being Output Components

3In order to accord with the condition of step 2.4, w = min
(
.005,

(
g
n

)−.5
)

4A 3-month average is used to obtain quarterly data from monthly series.
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which include series that explain deviations from per capita linear trends of different GDP

and production output components. The Labor Market category includes employment by

sector as well as unemployment rates and durations. The Housing Market group includes

regional housing starts and the residential investment series. The Financial Market classi-

fication includes a number of different interest rates, loan and credit quantities and asset

prices. The Exchange Rate group includes exchange rates of the US dollar to other foreign

currencies. The Investment grouping includes inventory indexes and other investment series.

The Price and Wage category includes a number of pricing indexes, wage indexes and com-

modity prices. The final category Other includes money supply measures and consumer and

producer sentiment surveys.

As is common in the Dynamic Factor Model literature, all non-core series sample standard

deviation is normalized to 1. In addition, these series are either demeaned, linearly detrended

log level or log first differenced and demeaned. A complete list and transformation rubric of

each core and non-core series is found in Appendix B.

The structural parameter marginal priors are in accordance to the Smets and Wouters

(2003, 2007) priors. Some structural parameters are fixed including the discount rate, share

of capital, depreciation rate, and the steady state share of government and investment to

total output. The latter parameters being calibrated to the average proportion of investment

and government purchases of GDP over the sample period. In the SWFF model the steady

state default rate is set to .0075 which corresponds to Bernanke, Gertler, Gilchrist (1999)

annualized default rate of 3%. The quarterly survival rate of entrepreneurs is fixed at .99

which corresponds to an average entrepreneur life of 68 quarters or 17 years. The steady state

spread is calibrated to 140 basis points which is roughly the sample median spread between

the BAA corporate bond yield and 10 year Treasury bond yield. This value is in line with

the estimated values of Del Negro et al. (2013) who estimated the steady state spread to be

between 73 and 150 basis points. A complete list of calibrated structural parameters as well

as the prior mean, standard deviation and description of the estimated structural parameters

can be found in Table D.1 and Table D.2 of the appendix. The priors for the state space

parameters include the elements of Λ and the diagonal elements of Ψ and R. The elements

of Λ can be separated between core and non-core elements. Core series may only have a
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single non-zero row element of Λ whose prior is normally distributed and centered around

15. Each non-core series corresponding row elements6 of Λ has a multivariate normal prior

centered around zero.

The prior for each ith row of the non-core series follows the work of Boivin and Giannoni

(2006) and Kryshko (2011), who use a Normal-Inverse-Gamma prior distribution for (Λi, Ri,i)

so that Ri,i ∼ IG2(.001, 3) and the prior mean of factor loadings for the ith row is given by

Λi|Ri,i ∼ N(0, Ri,iI) where the mean is a vector of zeros and I is the identity matrix. The

prior for the ith measurement equation’s autocorrelation parameter, Ψi,i is N(0, 1) for all

rows. The autocorrelation parameter prior is truncated to values inside the unit circle to

ensure all error processes are stationary.

Priors regarding the core series are still Normal-Inverse-Gamma but instead the mean of

the factor loadings of the ith row of Λ is centered at the DSGE models implied theoretical

loading. As discussed earlier the first data set of each core series category has a perfectly

tight loading prior. The priors for Ψ and R whose diagonal elements correspond to core series

remains the same. In the spirit of Boivin and Giannoni (2006) who fix the measurement

equation of the federal funds rate error term to be zero, I truncate R13,13 which correspond

to the federal funds rate error term to be no greater than 0.05. This assures that the nominal

interest rate of the DSGE model will not drift far away from the federal funds rate observed

in the economy.

Table 1: Priors for DSGE-DFM Γ Parameters

Description Distribution Mean Std

Γ Parameters
Ψi,i AR(1) coef. of measurement error Normal 0 1
Ri,i Variance of measurement error Inv. Gamma 0.001 3*
Λi,j Factor loadings of Non-core data sets Normal 0 Ri,iI
Λi,j Factor loadings of Core data sets Normal 1 Ri,iI

5The core interest rate series priors are centered around 4 since all data are in APR.

6The elements of Λ that correspond to t− 1 states of the St vector are assumed to be zero.
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3 Model Implied Forecast Evaluation

In this section I perform a similar exercise as Del Negro and Schorfheide (2013) of com-

paring the simulated and forecasting ability of the SW-Reg and SWFF-Reg models but I also

add the SW-DFM and SWFF-DFM models to the model comparison pool. Further, instead

of just focusing on output and inflation, I also pay particular attention to series related to

the labor and finance markets. Of course, many of these series can only be forecasted using

the SWFF-DFM and SW-DFM models that were estimated in a data-rich environment.

I first present the model implied forecasts of core macroeconomic growth series for all

four models at different time periods around the Great Recession, I then compute pseudo

out-of-sample forecasts for all four models for the time period of 1998-2011 and use Diebold-

Mariano test statistics to evaluate their forecasting performance around this selected sample

period. Finally, I examine the model implied forecasts of the SW-DFM and SWFF-DFM

models around the Great Recession for variables related to the labor and finance markets

that are not directly modeled in either DSGE model.

3.1 Forecasts of Output Component Growth

I compare the growth forecasts of the SW-Reg, (magenta) SWFF-Reg (green), SW-

DFM (red), SWFF-DFM (blue) and the median forecast given by the Survey of Professional

Forecasters (dashed-cyan) for real output, consumption and investment growth against actual

realized growth for these three series (black).

In particular, I take the estimated posterior distributions of the models’ structural pa-

rameters and loading coefficients of the Λ matrix and create simulated paths for the different

time series for both models. I estimate the models at six different time periods, one at which

all data related from 1984Q2 to 2007Q4 is available to the econometrician, one at which the

econometrician can see quarterly data related to 2008Q1, one in which they have 2008Q2

data values available to them and so forth. When the new data are revealed, the new values

are inserted into the Kalman filter and are used as the new starting points for each of the

simulations. The models’ posterior parameters are re-estimated after data for 2008Q3 is

available.

14



In total each forecast is generated by 500,000 simulations, 5,000 draws from the posterior

parameter distribution and each parameter draw is simulated using 100 draws of future

structural shocks for 16 quarters. In all simulations the zero lower bound is established

using shadow monetary policy shocks using an algorithm outlined by Holden and Paetz

(2012).

Figures 1-3 show the median forecast as well as the 68% forecast posterior density intervals

for the three expenditure series at six different staring times. The six time periods start when

data for the first quarter (2007Q4) of the Great Recession would have been available and

end when data for 2009Q1 would have been available to the econometrician.

Figure 1: Forecasts for Quarter to Quarter Real GDP Growth

Feb 08 May 08 Aug 08

Nov 08 Feb 09 May 09

Of note, both the DSGE-DFM models outperform the DSGE-Reg models in terms of

forecast accuracy for real GDP and real consumption growth around the Great Recession and

its recovery. In addition, the SWFF-DFM model can foresee negative GDP growth starting

in May 2008 and foresees the magnitude of the Great Recession starting in November 2008.

The SWFF-DFM also foresee the sluggish growth in consumption throughout the next three

years as can be seen by the bottom panel of Figure 2. It does overstate the decline in real

GDP in the year 2009, however, this may be due to the model’s inability to capture the
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Figure 2: Forecasts for Quarter to Quarter Real Consumption Growth

Feb 08 May 08 Aug 08

Nov 08 Feb 09 May 09

unconventional fiscal and monetary policy that took place over this time period.

Further, notice that the SWFF-DFM forecasts are better or comparable to the SPF

forecasts and are a stark contrast to the overly optimistic SW-Reg and SWFF-Reg models

which each predict a quick and robust recovery. This is a remarkable result given that the

SWFF-DFM model generates these forecasts with no real time data available to it unlike

the forecasts generated by the SPF. The SWFF-DFM November 2008 forecast only uses

20008Q3 data, it does not incorporate any real-time data that would be available for 2008Q4

in November like interest rates or other financial data.

Figure 3 shows the median forecast for real investment at six different staring times. Re-

garding this variable none of the four models can foresee the depths of decline in investment,

although, both DSGE-DFM models predict multiple quarters of negative investment growth

starting in August 2008 and are in line with the estimates generated by the SPF7. However,

once the depth of the decline in investment had been realized, the SWFF-Reg model does

7The SPF does not have a comparable forecast for real gross private investment so I use the median SPF
forecasts levels for real residential investment, real non-residential investment and real change in investment
inventories and calculate an implied SPF forecast of real gross private investment and its growth rate.
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the best job in predicting the dynamics of the real investment recovery.

Figure 3: Forecasts for Quarter to Quarter Real Investment Growth

Feb 08 May 08 Aug 08

Nov 08 Feb 09 May 09

When evaluating Figures 1-3 it is important to note how they relate to the results of Del

Negro and Schorfheide (2013). First, the SW-Reg and SWFF-Reg models of the paper are

most comparable to the SWπ and SWπ-FF models of Del Negro and Schorfheide and are in

line with the one and two quarter ahead forecasts for output. The SWπ-FF model like the

SWFF-Reg model of this paper does not see negative growth until the end of 2008.

Nevertheless, the SW-Reg and SWFF-Reg models both forecast robust economic growth

three to five quarters ahead. This is contrary to both the models used in the Del Negro

and Schorfheide paper, both of which actually underestimate the growth rate during the

recovery. The reasoning behind this is that the models in Del Negro and Schorfheide are

detrended along a stochastic growth path while all the models in this paper are detreneded

along a constant growth path. As a result, when variables are far from the steady state in

the models of this paper they are expected to grow faster, while the models in the Del Negro

and Schorfheide paper have the potential to move the steady state growth path closer to the

variables, resulting in the need for less “catch-up” growth. Given this modeling assumption,

the median forecasts of the SW-Reg and SWFF-Reg models are different than the models
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of the Del Negro and Schorfheide paper.

I opt to not use the stochastic growth path assumption for all four models because intro-

ducing it into DSEG-DFM estimation is non-trivial and I want to be able to directly compare

the dynamics of all models assuming the same DSGE modeling assumptions. Furthermore,

the DSGE-Reg models of this paper are capable of producing similar results of Del Negro

and Schorfheide for immediate forecasting horizons around the Great Recession. Likewise,

the forecasts generated by the DSGE-DFM models are still significantly better than the me-

dian forecast from the SPF around the Great Recession. This implies that they would also

out-forecast the Del Negro and Schorfheide models around this time period because they

found that the RMSE’s for the models in that paper were equivalent to or higher than the

median professional blue-chip forecasts for output.

3.2 Comparing the Point Forecasts of the Four Models

In the previous subsection, I placed particular attention on the forecasting performance

of each model around the Great Recession. In this subsection, I wish to examine the point

forecasts for all four models for a wider out-of-sample forecasting window of 1998-2011. Since

the out-of-sample forecasting evaluation window includes time periods that the zero lower

bound binds, I augment the SW and SWFF models starting in 2008Q4 with anticipated mon-

etary policy shocks. These shocks are identified by Federal Fund Rate market expectations,

as measured by OIS rates, following the approach described in Del Negro et al. (2013).

I conduct this “pseudo” out-of-sample forecast evaluation, by first estimating each model

using 1984Q2-1997Q4 revised data and conduct one, two and four quarter ahead forecasts

for core macroeconomic variables. I then add additional data each quarter and generate new

forecasts. I re-estimate the model parameters twice a year.

After collecting median point forecasts for each quarter and each model, I asses their

forecasting ability using Diebold-Mariano (DM) tests. DM test statistics for GDP are located

in Table 2. A positive DM test statistic implies that the “model” on the right of column one

has lower squared forecast errors than the “model” on the left. A negative DM test statistic

implies that the “model” on the left of column one has lower squared forecast errors than

the “model” listed on the right.
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Table 2: Diebold-Mariano Test Statistics for Output Growth

Entire Sample Pre-Recession Great Recession
1998Q1-2011Q4 1998Q1-2007Q2 2007Q3-2011Q4

h=1 h=2 h=4 h=1 h=2 h=4 h=1 h=2 h=4

SW-Reg vs SWFF-Reg -0.8 -1.0 -0.8 -0.9 -2.6* -1.5 1.0 -0.1 -0.1

SW-Reg vs SW-DFM 1.4 1.8 2.0* -1.5 -0.8 0.8 2.7* 2.7* 15.9*
SWFF-Reg vs SWFF-DFM 2.9* 2.4* 2.3* 1.4 1.7 1.4 2.8* 2.8* 14.8*

SW-DFM vs SWFF-DFM 3.2* 2.3* 2.0* 2.7* 1.2 0.6 2.0* 2.6* 2.4*

SPF vs SW-Reg -3.1* -2.1* -1.7 -0.8 0.2 0.1 -3.6* -3.4* -8.1*
SPF vs SWFF-Reg -2.8* -2.3* -1.8 -0.9 -0.6 -0.2 -3.1* -3.0* -8.4*
SPF vs SWFF-DFM 1.1 0.7 1.0 0.0 0.8 0.8 1.5 0.1 0.8

Note: * denotes a DM statistic where the null hypothesis
of equal predictive accuracy is rejected at the 5% level

In evaluating the model’s forecasts, four clear patterns appear. First, I find a similar

result obtained by Del Negro and Schorfheide (2013), that the SWFF-Reg model’s forecasts

of GDP only improve upon the SW-Reg model’s forecasts after the Great Recession. As

the squared forecast errors for all forecast horizons are lower for SW-Reg model for the

entire sample period and significantly lower for the pre-Great Recession error of 1998-2007Q2

sample period.

The second noteworthy implication of this application is the beneficial use of large data

sets when I compare the output growth forecasts for the SW-Reg and SWFF-Reg models

to the SW-DFM and SWFF-DFM forecasts. I see that the use of the extra data series

substantially lowers the squared forecasts errors for output growth as shown in the second

and third rows of Table 2. All DM tests for 1, 2 and 4-quarter ahead forecasts of output

growth are statistically significant at the 5% level. In addition, the DSGE-DFM models

significantly out forecasts their DSGE-Reg counter parts in terms of short-term consumption

and investment growth as can be seen in Tables D.3 and D.4 of the appendix.

In addition to the DSGE-DFM models outperforming the DSGE-Reg models throughout

the forecast evaluation window (1998-2011), I also see that the “predictive performance

enhancing” effects of large data sets used in DSGE-DFM estimation start to amplify starting

in the third quarter of 2007.
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Thirdly, when I compare the SW-DFM and SWFF-DFM models in row four of Table 2,

I see that the introduction of financial frictions and the use of a larger data vector allows the

SWFF model to better compete with the SW model through the 1998-2011 forecasting time

frame. This is suggested by the Diebold-Mariano tests which are either significantly positive

or inconclusive for most h period ahead forecasts. This suggests that the extra data used in

estimation helps solve the time-varying forecast ranking of the SW and SWFF implied by

Del Negro and Schorfheide (2013).

Finally, rows five through seven of Table 2 show the competitiveness of the different mod-

els against the real-time forecast generated by the median forecast of leading professional

forecasters of the SPF. As one can see the SW-Reg and SWFF-Reg models produced compet-

itive forecasts prior to 2007, but significantly fall behind the SPF forecast during the Great

Recession. The rise in forecast errors is so large for the DSEG-Reg models that it makes the

forecast accuracy of both significantly worse for the entire sample period. However, when I

compare the SPF forecasts to the forecasts generated by the SWFF-DFM model, I see that

it has marginally lower squared forecast errors for output growth for the entire sample and

both pre and post Great Recession periods. In addition, the squared forecast errors of con-

sumption and investment growth from the SWFF-DFM model are statistically insignificantly

different from the squared forecast errors generated by the pooled SPF forecasts.

In summary, I see that the SWFF-Reg model only outperforms the SW-Reg model during

the Great recession and its recovery; the use of a large data set significantly improves the

forecasts of output and its components when compared to regular DSGE estimation; the

large data vector eliminates the time-varying forecast ranking between the SW and SWFF

models; and the SWFF-DFM produces competitive growth forecasts that are analogous to

the median forecasts of the SPF before, during and after the Great Recession.

3.3 Forecasts of Labor, Housing, and Credit Markets

I next look at the forecasted paths of some labor market metrics including employment by

sector, the unemployment rate, credit levels and housing starts, all of which are not directly

incorporated in either DSGE model. The SWFF-DFM forecasted paths are in blue and the

SW-DFM forecasted paths are in red, while the actual series values are shown in black. All
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forecasts have been transformed into actual levels.

When I examine forecasts for the unemployment rate and the number of overall employees

in the economy in Figure 4 and forecasts for the number of employees by sector in Figure 5,

I find that the model with a modeled finance market (SWFF-DFM) is able to pick up the

upcoming increase of the unemployment rate as early as the fall of 2008. In contrast, the

SW-DFM does not forecast an unemployment rate above 9% until after data from the 1st

quarter of 2009 had been realized.

Further, the SWFF-DFM model significantly out forecasts the SW-DFM model when

it comes to overall employees and employees in the professional services, retail trade, con-

struction, manufacturing and wholesale trade sectors. Although the SWFF-DFM model

constantly outperforms the SW-DFM model in predicting the future paths of all of these

series, it is still overly optimistic about the number of jobs in the economy 3-4 years into

the future. This may be a result of aging demographic changes seen around the country.

Under their current construction both models have no ability to see such a demographic

change as they use the population of 16 years and older (not prime-working age population)

to transform variables in per capita terms.

Figure 4: Forecasted Paths for Aggregate Labor Market

Nov 08 Feb 09 May 09
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Figure 5: Forecasted Paths for Labor Market Sectors

Nov 08 Feb 09 May 09
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Figure 6 shows the forecasted paths of housing starts, consumer credit outstanding and

business loans. Once again I see that the SWFF-DFM model soundly outperforms the SW-

DFM model when it comes to housing starts. As far as consumer and business loans, the

SWFF-DFM model is a good predictor of both for the first 4-6 quarters of each forecast.

However, the SWFF-DFM model is unable to forecast the significant increases in both con-

sumer and business loans that starts in the middle of 2010. One possible explanation for the

increase in both could be QE2, which started in August 2010. Of course neither model has

a mechanism to foresee or incorporate such a policy change.

Figure 6: Forecasted Paths for Financial Metrics

Nov 08 Feb 09 May 09

In summary, the SWFF-DFM model is able to see the decrease in jobs and the increase

in the unemployment rate starting in November 2008. Additionally the SWFF-DFM model

foresees the slower rate of overall jobs and jobs in particular sectors. There is a significant
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difference in the forecasted paths between the two models for the 2008-2013 time period.

Yet this is not always the case for previous time periods, if I examine periods in which the

financial spread was low and financial volatility was also low the forecasted paths between the

models share similar posterior density intervals as can be seen in Figure D.1 of the appendix.

This would suggest that in addition to real output, the SWFF model is better at identifying

the dynamics of the labor and finance markets in times of high financial volatility, yet still

competitive with the SW model in times of low financial volatility.

4 Mechanisms Behind the Results

To better understand why the SWFF-DFM model was able to foresee the output and

labor dynamics associated with the Great Recession more accurately and quicker than the

SWFF-Reg, SW-Reg and SW-DFM models, it is important to compare the structural param-

eter estimates across the estimation techniques. Table D.5 reports the posterior estimates

for all the structural parameters in the SWFF model while Figure 7 plots the posterior dis-

tributions when fitted to a normal distribution for a select number of structural parameters

for the SWFF model estimated using data from 1984Q2-2008Q3.

A few observations emerge when we compare the parameter estimates of the SWFF-Reg

and SWFF-DFM models. First, the price and wage Calvo estimates share little to no overlap

between the estimation techniques. The average length of contract negotiation for prices and

wages is six quarters under the DSGE-Reg estimation compared to about every three quarters

in the DSGE-DFM estimation. These smaller, yet still significant, price and wage rigidities

are more in line with the findings of Klenow and Kryvtsov (2008) who examined monthly

price changes by industry and found that the mean price duration is about 7 months. The

parameter that governs habit formation consumption substantially increases in the DSGE-

DFM estimation for both the SW and SWFF models when compared to its estimate under

DSGE-Reg estimation. This helps explain why the SWFF-DFM model is able to forecast

the sluggish growth in consumption during the recovery shown in Figure 2.

Taylor Rule policy parameters are found to be more responsive to lagged inflation and

the lagged output gap when estimated in the data-rich environment implying more inertia
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and persistence in the model. The policy parameters regarding the contemporaneous output

gap and inflation levels are estimated to be less responsive in the data-rich environment.

Many of the parameters linked to the exogenous shocks of the model are different across

the estimation techniques of the SWFF model. Foremost, price and wage mark-up shocks

are estimated to be much more persistent in the SWFF-DFM estimation technique. The

presence of many other price and wage indexes, including oil prices, drive this result as the

estimates return to DSGE-Reg values when the SWFF-DFM is estimated without the Price

and Wage Index data component.

The parameters that preside over the financial accelerator also change when estimated

in a data-rich environment. There is more inertia in the financial accelerator as the spread

elasticity is found to be larger and the finance shock is found to be smaller but much more

persistence. The extra estimated persistence in nearly all structural shocks in the SWFF-

DFM coupled with its modeled financial market can explain why the SWFF-DFM was able

to anticipate the slow recovery in GDP, consumption and sector employment after large

negative financial, investment and preference shocks were seen in 2008.
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Figure 7: Posterior Distribution Estimates of Structural Parameters in SWFF
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4.1 Driving Forces behind the Great Recession

Essentially a generated forecast of any variable is a weighted average of the various IRFs

controlling for initial conditions. Historical decomposition of GDP for the SWFF model

shows that negative financial, investment and preference shocks were the main drivers of the

decline in GDP as illustrated in Figure 8. Examining the IRFs associated with these types of

shocks help us better understand why the SWFF-DFM model foresaw the Great Recession

earlier than other DSGE models and why it produces output and labor market dynamics in

accordance with the recovery period of the Great Recession.

Figure 8: Historical Decomposition of Output in the SWFF Model

Figure 9 gives the IRFs and 80% posterior density band of a one unit negative finance

shock (positive spread shock), negative investment shock and a negative preference shock.

The red IRFs correspond to the same one unit shocks for the DSGE-Reg estimation. Al-

though all shocks are unitary the estimated standard deviation for the shock can differ. As

expected real GDP falls for all three types of negative shock as is seen in the first row of Fig-

ure 9. With regard to finance shocks, the impact on the spread is smaller in the SWFF-DFM

model but its impact is larger on real GDP when compared to the SWFF-Reg model. This is

due to the higher estimate of habit consumption in the SWFF-DFM model. This higher per-

sistence in consumption does not cause consumption to increase in the SWFF-DFM model

as it does in the SWFF-Reg model, creating a deeper decline in real GDP.
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As expected real investment falls from a negative investment shock and real consumption

falls from a negative preference shock in both the SWFF-Reg and SWFF-DFM models.

However, the degree to which they fall and how fast they recover is quite substantial. This

is due to the smaller estimates of the average size of an investment and preference shock and

larger estimates of investment and preference shock persistence in the SWFF-DFM model.

In the SWFF-DFM model it takes an extra two to three quarters before the component

begins to recover when compared to the SWFF-Reg model. Further, real GDP does not

recover as fast from both of these type of shocks because the tradeoff between consumption

and investment that occurs from both investment and preference shocks in the SWFF-Reg

model diminishes or disappears in the SWFF-DFM model.

Figure 9: IRFs of the Great Recession Shocks

Finance Shock Investment Shock Preference Shock

The slower recoveries and diminishing or disappearing trade-off between consumption
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and investment that occurs in the SWFF-DFM model from these three types of shocks that

depict the Great Recession helps explain why the SWFF-DFM model was able to forecast

the output dynamics of the Great Recession and it ensuing recovery so well when compared

to the SWFF-Reg model. The SWFF-Reg model’s estimated structural parameters predict

slightly larger declines in real GDP from the three Great Recession shocks but a quicker

recovery because the estimated structural parameters make the consumption/investment

tradeoff larger, thus mitigating the decline in real GDP that initially takes place.

5 Conclusion

In this paper, the Smets and Wouters (2003, 2007) New Keynesian Dynamic Stochastic

General Equilibrium (DSGE) model augmented with a financial accelerator (SWFF) is es-

timated using a large set of economic and financial series following the work of Boivin and

Giannoni (2006) and Kryshko (2011). I then conduct similar exercises comparing the four

models (SW-Reg, SWFF-Reg, SW-DFM and SWFF-DFM) as was done for the SW-Reg and

SWFF-Reg models in the Del Negro and Schorfheide (2013) paper. I find that the SWFF-

DFM model is better in capturing the dynamics of many economic series including output,

consumption and many labor market metrics around the time of the Great Recession and

its ensuing recovery.

In addition, the SWFF-DFM model generates dominant out-of-sample forecasts for the

entire examined sample period (1998-2011), not just in the time period surrounding the

Great Recession (2008-2011), as was the case for the SWFF-Reg model in Del Negro and

Schorfheide (2013). The paper suggests that a structural DSGE model embedded with a

modeled financial market and estimated in a data-rich environment would have predicted

the output and labor market severity of the Great Recession and its aftermath, as well as

foreseen the downturn in economic growth as early as February 2008. Further, such a model

produces competitive forecasts of output, consumption, employment and unemployment

when compared to the forecasts generated by the Survey of Professional Forecasters.

The continuing advancements in computational programming and the ever growing num-

ber of macroeconomic and financial series available allows DSGE-DFM estimation to be a

bountiful area of future research.
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A Appendix: Log Linear Equations

Both models are linearized around the non-stochastic steady state and then solved using
the Sims (2002) method. This solution is the transition equation in the state-space set-up of
Sections 2.2 and 2.3. Variables denoted with a hat are defined as log deviations around the
steady state.

(
Ŷt = log

(
Yt

Y

))
Variables denoted without a time script are steady state values.

In all, the SWFF model is reduced to 12 equations and eight exogenous shocks all of which
are listed below.

Physical capital K̄t accumulates according to:

ˆ̄Kt = (1− τ) ˆ̄Kt−1 + τ Ît + τ(1 + β)S ′′ε̂It (A.1)

where εIt is an AR(1) investment shock and τ is the depreciation rate and S ′′ is a parameter
that governs investment adjustment costs. A large S ′′ implies that adjusting an investment
schedule is costly.

Labor Demand is given by

L̂t = −ŵt + (1 + 1
ψ

)r̂kt + ˆ̄Kt−1 (A.2)

where rkt is the real rental rate of capital and ψ is a parameter that captures utilization costs
of capital. A large ψ infers that capital utilization costs are high. The economy’s resource
constraint and production function take the form:

Ŷt = CyĈt + Iy Ît +
rkk̄y
ψ

r̂kt +Mt + ε̂Gt (A.3)

Ŷt = φε̂at + φα ˆ̄Kt−1 +
φα

ψ
r̂kt + φ(1− α)L̂t (A.4)

where Cy and Iy are the steady state ratio of consumption and investment to output and
M is the monitoring costs faced by banks. M is assumed to be negligible and is left out in
the estimation process. φ resembles a fixed cost of production and is assumed to be greater
than 1.

The Linearized Taylor Equation that determines the nominal interest rate is

R̂t = ρR̂t−1 + (1− ρ)
[
rπ1 π̂t + ry1Ŷt + rπ2 π̂t−1 + ry2Ŷt−1

]
+ ε̂rt (A.5)

The consumption and investment transition equations are

Ĉt =
h

1 + h
Ĉt−1 +

1

1 + h
Et[Ĉt+1]−

1− h
(1 + h)σc

(
R̂t − Et[π̂t+1]

)
+ ε̂bt (A.6)

Ît =
1

1 + β
Ît−1 +

β

1 + β
Et[Ît+1] +

1

(1 + β)S ′′
q̂t + ε̂It (A.7)

where ε̂It and ε̂bt are exogenous stochastic stationary processes that effect the short term
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dynamics of consumption and investment. qt is the relative price of capital and β is the
discount rate.

The entrepreneurial return on capital is characterized by

ˆ̃Rk
t − π̂t =

1− τ
1− τ + rk

q̂t +
rk

1− τ + rk
r̂kt − q̂t−1 (A.8)

The model yields a phillips curve equal to:

π̂t =
β

1 + βιp
Et[π̂t+1] +

ιp
1 + βιp

π̂t−1 +
(1− βξp)(1− ξp)

(1 + βιp)ξp

(
αr̂kt + (1− α)ŵt − ε̂at

)
+ ε̂pt

(A.9)

where ξp is the degree of price stickiness, ιp is the degree of price indexation to last period’s
inflation rate and ε̂at , ε̂

p
t are exogenous processes that affect the productivity of production

and the price mark up over marginal cost respectively.
Wages in the economy evolve according to:

ŵt =
β

1 + β
Et[ŵt+1] +

1

1 + β
ŵt−1 +

β

1 + β
Et[π̂t+1]−

1 + βιw
1 + β

π̂t +
ιw

1 + β
π̂t−1

− (1− βξw)(1− ξw)

(1 + β)
(

1 + νl
1+λw
λw

)
ξw

(
ŵt − νlL̂t −

σc
1− h

(Ĉt − hĈt−1)
)

+ ε̂wt
(A.10)

where ξw is the degree of wage stickiness, ιw is the degree of wage indexation to last period’s
inflation rate and ε̂wt , is an exogenous process that affect monopoly power households hold
over labor.

The finance market is characterized by two equations, the first being the spread of the
return on capital over the risk free rate:

Ŝt ≡ Et

[
ˆ̃Rk
t+1 − R̂t

]
= χ

(
q̂t + ˆ̄Kt − n̂t

)
+ ε̂Ft (A.11)

where χ is the elasticity of the spread with respect to the capital to net worth ratio and ε̂Ft
is a finance shock that effects the riskiness of entrepreneurs and thus the riskiness of banks
being paid back in full.

The second financial equation contains the evolutional behavior of entrepreneur net
worth:

n̂t = δR̃k( ˆ̃Rk
t − π̂t)− δR(R̂t−1 − π̂t) + δqK(q̂t−1 + ˆ̄Kt−1) + δnn̂t−1 − δσε̂Ft−1 (A.12)

where the δ coefficients are functions of the steady state values of the loan default rate,
entrepreneur survival rate, the steady state variance of the entrepreneurial risk shocks, the
steady state level of revenue lost in bankruptcy, and the steady state ratio of capital to
net worth. The value of χ, which will be estimated, along with the calibrated steady state
spread will determine the steady state level of the variance of the exogenous risk shock, the
steady state value of the percentage of revenue lost in bankruptcy and the steady state level
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of leverage. Therefore, given a steady state spread the value of χ will determine the values
of the δ coefficients.8

The SWFF model has eight exogenous shocks, seven of which are AR(1) processes the
lone exception being the monetary policy shock which is simply white noise. All processes
are assumed to be i.i.d. with mean zero and standard deviation σi and autocorrelation pa-
rameters ρi, where i = {a, b,G, r, I, F, p, w}

SW Model
The SW model is identical to the SWFF model without the entrepreneur and banking
sectors. Instead households own the capital, decide the utilization rate of capital, rent it
to intermediate firms and sell it to capital producers. As a result the household budget
constraint includes income received by renting and selling capital. In addition, households
must choose how much capital to own.

The linearized first order condition of capital is given by

q̂t = −(R̂t − Et[π̂t+1]) +
1− τ

1− τ + rk
Et[q̂t+1] +

rk

1− τ + rk
Et[r̂

k
t+1] + ε̂Qt (A.13)

This equation will replace the linearized equation (A.8). Since the equations (A.11) and
(A.12) do not exist in the SW model there is a loss of an exogenous shock. In order to be
able to directly compare misspecification error of the two models it is best that both models
have the same amount of exogenous shocks. This is accomplished by adding a idiosyncratic
equity premium price shock represented by ε̂Qt to replace the finance shock ε̂Ft of the SWFF
Model. Equation (A.13) is nested in the SWFF model if there exists no finance spread

(i.e ˆ̃Rk
t+1 = Rt). This assumption implies (A.8) forwarded ahead one period is identical to

(A.13).

8For a comprehensive look at the functional forms of all the δ coefficients used in coding
the model, one must look at the working appendix of Del Negro and Schorfheide available at
http://economics.sas.upenn.edu/ schorf/research.htm.
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Kryshko	Shorthand FRED	Code Trans*Long	Description Used	in	Reg	Estimation

Core	Output
1 RGDP GDPC1 2 Real	GDP ✳

2 IP_TOTAL INDPRO 2 Industrial	Production	Index:total
3 RGDI A261RX1Q020SBEA 2 Real	Domestic	Income

Core	Inflation
4 PGDP GDPDEF 3 GDP	Price	deflator ✳

5 PCED PCECTPI 3 PCE_ALL	Price	deflator
6 CPI_ALL CPIAUCSL 3 CPI_ALL	Price	index

Core	Consumption
7 RCONS PCECC96 2 Real	Personal	Consumption	Expenditures ✳

Core	Investment
8 RINV GDPI 2 Real	Private	Domestic	Investment ✳

Core	Wages
9 RWAGE AHETPI 4 Real	Average	Hourly	wages:production:total	private ✳

Core	Labor	Employment
10 HOURS HOANBS 2 Hours	Worked ✳

11 EMP_CES PAYEMS+USGOVT 2 Employees:Total	Nonfarm
12 EMP_CPS CE160V 2 Civilian	Labor	Force:Employed,	Total

Core	Interest	Rate
13 FedFunds FEDFUNDS 0 Federal	Funds	Rate	(effective) ✳

14 Tbill_3m TB3MS 0 Interest	Rate	U.S.	Treasury	bill	3	month
15 AAABond AAA 0 Bond	Yield:	Moody's	AAA	corporate

Core	Spread*
16 SFYBAAC BAA-GS10 0 Spread	of	BAA	corporate	yield	to	10	year	Treasury ✳

17 SFYAAAC AAA-GS10 0 Spread	of	AAA	corporate	yield	to	10	year	Treasury

Output	Components
18 IP_FINAL IPS299 2 Industrial	Production	Index:final	products
19 IP_CONS_DBLE IPDCONGD 2 Industrial	Production	Index:Durable	Consumer	Goods
20 IP_CONS_NONDBLE IPNCONGD 2 Industrial	Production	Index:NonDurable	Consumer	Goods
21 IP_BUS_EQPT IPBUSEQ 2 Industrial	Production	Index:Business	Equipment
22 IP_DRBLE_MATS IPDMAT 2 Industrial	Production	Index:Durable	Goods	Materials
23 IP_NONDRBLE_MATS IPNMAT 2 Industrial	Production	Index:NonDurable	Goods	Materials
24 IP_MFG IPMAN 2 Industrial	Production	Index:Manufacturing
25 IP_FUELS IPUTIL 2 Industrial	Production	Index:Fuels
26 PMP NAPMPI 0 NAPM	Production	index
27 RCONS_DRBLE DDURRA3Q086SBEA 2 Real	Personal	Consumption	Expenditures	index:Durables
28 RCONS_NONDRBLE DNDGRA3Q086SBEA 2 Real	Personal	Consumption	Expenditures	index:NonDurables
29 RCONS_SERV DSERRA3Q086SBEA 2 Real	Personal	Consumption	Expenditures	index:Sevices
30 REXPORTS B020RA3Q086SBEA 2 Real	Exports	Quantity	Index
31 RIMPORTS B255RA3Q086SBEA 2 Real	Imports	Quantity	Index
32 RGOV B823RA3Q086SBEA 2 Real	Government	Consumption	&	Investment	Quantity	Index

Labor	Market
33 EMP_Mining USMINE 2 Employees:Mining	&	Logging
34 EMP_CONST USCONS 2 Employees:Construction
35 EMP_MFG MANEMP 2 Employees:Manufacturing
36 EMP_SERVICES SRVPRD 2 Employees:Service	Providing
37 EMP_TTU USTPU 2 Employees:Trade,	Transportation,	Utilities
38 EMP_WHOLESALE USWTRADE 2 Employees:Wholesale	Trade
39 EMP_RETAIL USTRADE 2 Employees:Retail	Trade
40 EMP_FIN USFIRE 2 Employees:Financial	Activities
41 EMP_GOVT USGOVT 2 Employees:Government
42 EMP_PROSERV USPBS 2 Employees:Professional	Services
43 EMP_LEISURE USLAH 2 Employees:Leisure	&	Hospitality
44 URATE UNRATE 0 Unemployment	Rate
45 U_DURATION UEMPMEAN 0 Average	Duration	of	Unemployment	(weeks)
46 U_L5WKS UEMPLT5 2 Unemployment	Duration:Persons:Less	than	5	Weeks
47 U_5_14WKS UEMP5TO14 2 Unemployment	Duration:Persons:5-14	Weeks
48 U_15_26WKS UEMP15T26 2 Unemployment	Duration:Persons:15-26

Core	Sets

Non-Core	Sets

B Appendix: Data and Transformations
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49 U_M27WKS UEMP27OV 2 Unemployment	Duration:Persons:27	weeks	+
50 HOURS_AVG CES0600000007 0 Average	Weekly	Hours:Goods	Producing	
51 HOURS_AVG_OT AWOTMAN 0 Average	Weekly	Overtime	Hours:Manufacturing

Housing	Market
52 HSTARTS_NE HOUSTNE 1 Housing	Starts:Northeast
53 HSTARTS_MW HOUSTMW 1 Housing	Starts:Midwest
54 HSTARTS_SOU HOUSTS 1 Housing	Starts:South
55 HSTARTS_WST HOUSTW 1 Housing	Starts:West
56 RRRESINV B011RA3Q086SBEA 2 Real	Private	Domestic	Investment:Residential	Quantity	Index

Financial	Market
57 SFYGM6 TB6MS-TB3MS 0 Spread	of	6	month	Tbill	to	3	month	Tbill
58 SFYGT1 GS1-TB3MS 0 Spread	of	1	year	Treasury	to	3	month	Tbill
59 SFYGT10 GS10-TB3MS 0 Spread	of	10	year	Treasury	to	3	month	Tbill
60 TOT_RES TOTRESNS 2 Total	Reserves	of	Depository	Institutions
61 TOT_RES_NB NONBORRES 5 Total	Reserves	Of	Depository	Institutions,	Nonborrowed
62 BUS_LOANS BUSLOANS 2 Commercial	and	Industrial	Loans	at	All	Commercial	Banks
63 CONS_CREDIT NONREVSL 2 Total	Nonrevolving	Credit	Owned	and	Securitized,	Outstanding
64 SP500 SP500 3 S&P	500	Stock	Price	Index
65 DJIA DJIA 3 Dow	Jones	Industrial	Average

Exchange	Rates
66 EXR_US TWEXMMTH 3 Trade	Weighted	U.S.	Dollar	Index:	Major	Currencies
67 EXR_SW EXSZUS 3 Switzerland	/	U.S.	Foreign	Exchange	Rate	
68 EXR_JAN EXJPUS 3 Japan	/	U.S.	Foreign	Exchange	Rate
69 EXR_UK EXUSUK 3 U.S.	/	U.K.	Foreign	Exchange	Rate
70 EXR_CAN EXCAUS 3 Canada	/	U.S.	Foreign	Exchange	Rate

Investment	
71 NAPMI NAPM 0 Purchasing	Managers	Index
72 NAPM_NEW_ORDERS NAPMNOI 0 NAPM	New	Orders	Index
73 NAPM_SUP_DEL MAPMSDI 0 NAPM	Supplier	Deliveries
74 NAPM_INVENTORIES NAPMII 0 NAPM	Inventories	Index
75 RNONRESINV B009RA3Q086SBEA 2 Real	private	fixed	investment:	Nonresidential	quantity	index

Price	&	Wage	Indexes
76 RAHE_CONST CES3000000008 4 Real	Avg.	Hourly	wages:construction	(Deflated	w/GDP	Deflator)
77 RAHE_MFG CES3000000008 4 Real	Avg.	Hourly	wages:manufacturing	(Deflated	w/GDP	Deflator)
78 RCOMP_HR COMPRNFB 4 Real	Compensation	Per	Hour	(index)
79 ULC ULCNFB 4 Unit	Labor	Cost	(index)
80 CPI_CORE CPILFESL 3 CPI:Less	food	and	energy
81 PCED_DUR DDURRA3Q086SBEA 3 PCE:Durable	goods	price	index
82 PCED_NDUR DNDGRA3Q086SBEA 3 PCE:NonDurable	goods	price	index
83 PCED_SERV DSERRG3Q086SBEA 3 PCE:Services	price	index
84 PINV_GDP GPDICTPI 3 Gross	private	domestic	investment	price	index
85 PINV_NRES_STRUCT B009RG3Q086SBEA 3 GPDI:price	index:structures
86 PINV_NRES_EQP B010RG3Q086SBEA 3 GPDI:price	index:Equiptment	and	software
87 PINV_RES B011RG3Q086SBEA 3 GPDI:price	index:Residential
88 PEXPORTS (B020RG3Q086SBEA 3 GDP:Exports	Price	Index
89 PIMPORTS B021RG3Q086SBEA 3 GDP:Imports	Price	Index
90 PGOV B822RG3Q086SBEA 3 Government	Consumption	and	gross	investment	price	index
91 P_COM PPIACO 3 PPI:All	commodities	price	index
92 P_OIL PPICEM/PCEPILFE 3 PPI:Crude	(Divided	by	PCE	Core)

Other
93 UTL11 MCUMFN 0 Capacity	Utilization-Manufacturing
94 LABOR_PROD OPHNFB 4 Output	per	hour	all	persons:business	sector	index
95 UMICH_CONS UMCSENT 1 University	of	Michigan	Consumer	Expectations
96 M_1 M1SL 2 M1	Money	stock
97 M_2 M2SL 2 M2	Money	stock

Note:	Since	there	is	no	Spread	variable	in	the	SW	Model,	data	set	16	is	not	used	in	the	SW-Reg	estimation	and	data	sets	16	and	17	are	moved	to	the	
Financial	Market	grouping	for	SW-DFM	estimation

*Transformation	codes	are	described	in	the	data	transformation	rubric



Data Transformation Rubric

Code Description
0 Demeaned
1 Log() and demeaned
2 Linear detrended Log() per capita
3 Log() differenced and demeaned
4 Detrended Log()
5 Detrended per capita level

Note: All per capita variables are calculated
using the adult population series. (CNP16OV)

Measurement Equations for DSGE-Reg Estimation
The measurement equation (2.2) is specified as follows where the 8th row is omitted for the
SW model: 

RGDP
PGDP

RCONS
RINV

RWAGE
HOURS

FedFunds
SFYBAAC/4


=



1 0 0 0 0 0 0 0 . . . 0
0 1 0 0 0 0 0 0 . . . 0
0 0 1 0 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
0 0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 1 0 0 . . . 0
0 0 0 0 0 0 4 0 . . . 0
0 0 0 0 0 0 0 1 . . . 0





yt
πt
ct
It
wt
Lt
Rt

St
...
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C Appendix: Estimated State Variables

I examine the in-sample dynamics of the model to ensure that our SWFF-DFM model is
consistent (in terms of the conduct of macroeconomic series) with the in-sample dynamics of
the SWFF-Reg model. Using the Carter-Kohn algorithm, it is straightforward to calculate
the estimates of the endogenous variables of the model over the sample time period. These
are plotted for the SWFF model in Figure C.1. The blue line and shaded area represent the
posterior mean and 90% density interval of the variable under SWFF-DFM estimation and
the red line represents the posterior mean of the variable under SWFF-Reg estimation. The
y-axis of all plots is representing percentage deviations away from the variable’s steady state
values.

Figure C.1: Simulated States of Endogenous Variables of SWFF

The eight plots of Figure C.1 represent endogenous variables that are directly related to
a data series in the core. Recall, eight of the series have a perfectly tight loading prior to
ensure that the variable is “anchored” to its economic definition. As the plots show this
is mostly the case with two exceptions, wage and investment. The endogenous variables
of consumption, inflation, output, interest rate, hours worked and financial spread in the
SWFF-DFM track the core data series that is associated with these variables.

When I look at the plots for wage growth and investment growth in Figure C.2, I see
a pattern emerge. First, the growth rates of both real wage and investment in the SWFF-
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DFM model match the endogenous variables each is associated with more closely. In certain
periods when the model implied endogenous variable in the SWFF-DFM model is not in the
neighborhood as the data series it is directly related to, I see that it is very close to other
series that could be used as an alternative data series to match the endogenous variable in
the model. For example, two periods in which real wage growth in the SWFF-DFM model
differs from the core data set are 1990-1992 and 1998-2002. During both these periods real
wage growth in the SWFF-DFM model more closely aligns with the growth rate of real
compensation per hour.

Additionally, the endogenous variable of real investment growth in the SWFF-DFM
model seems to be smoother than the actual growth rate of Real Gross Private Domes-
tic Investment as seen in the right hand plot of Figure C.2. However, the growth rate of
Real Private Fixed Investment seems to match the endogenous variable of real investment
growth in the SWFF-DFM model quite well.

Figure C.2: Simulated Growth Rates of Real Investment and Real Wages
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D Appendix: Tables & Figures

Table D.1: Calibrated Parameters

Description Value
β Discount rate 0.99
α Share of capital 0.3
τ Depreciation rate 0.025
Iy S.S. investment proportion of output 0.18
gy S.S. government proportion of output 0.19
λw Degree of wage markup 0.3
Specific to SWFF
γ Survival rate of entrepreneur 0.99
F ∗ Loan default rate 0.0075
S S.S. Spread (Annual %) 1.4
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Table D.2: Priors for DSGE Models’ Parameters

Description Distribution Mean Std

Structural Parameters
ψ Capital utilization costs Beta 0.2 0.08
ιp Degree of indexation on prices Beta 0.5 0.15
ιw Degree of indexation on wages Beta 0.5 0.15
ξp Calvo price stickiness Beta 0.6 0.05
ξw Calvo wage stickiness Beta 0.6 0.05
νl CRRA coef. on labor Gamma 1.4 0.45
σc CRRA coef. on consumption Gamma 1.2 0.45
h Habit consumption Beta 0.7 0.1
φ Fixed cost of production Gamma 0.5 0.3
S′′ Capital adjustment cost Normal 5 1

Policy Parameters
rπ1 Taylor Rule coef. on inflation Gamma 2 0.25
ry1 Taylor Rule coef. on output gap Gamma 0.2 0.1
rπ2 Taylor Rule coef. on past inflation Normal -0.3 0.1
ry2 Taylor Rule coef. on past output gap Normal -0.06 0.05
ρ Lagged interest rate in Taylor Rule Beta 0.7 0.1

Exogenous Processes Parameters
ρa AR(1) coef. on productivity shock Beta 0.8 0.1
ρb AR(1) coef. on preference shock Beta 0.8 0.1
ρG AR(1) coef. on gov’t spending shock Beta 0.8 0.1
ρI AR(1) coef. on investment shock Beta 0.8 0.1
ρw AR(1) coef. on wage mark-up shock Beta 0.5 0.1
ρp AR(1) coef. on price mark-up shock Beta 0.5 0.1
σa Std. of productivity shock Inv. Gamma 0.1 2*
σb Std. of preference shock Inv. Gamma 0.1 2*
σG Std. of gov’t spending shock Inv. Gamma 0.1 2*
σr Std. of monetary policy shock Inv. Gamma 0.1 2*
σI Std. of investment shock Inv. Gamma 0.1 2*
σp Std. of price mark-up shock Inv. Gamma 0.1 2*
σw Std. of wage mark-up shock Inv. Gamma 0.1 2*
σq Std. of equity premium shock Inv. Gamma 0.1 2*

Parameters Specific to SWFF
χ∗ Spread Elasticity Beta 0.05 0.005
ρF AR(1) coef. on finance shock Beta 0.8 0.1
σF Std. of finance shock Inv. Gamma 0.1 2*

Note: The auxiliary parameter χ is estimated with χ∗ = .0225 + .0825χ

Note: All inverse gamma distributions list degrees of freedom instead of std.
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Table D.3: Diebold-Mariano Test Statistics for Consumption Growth

Entire Sample Pre-Recession Great Recession
1998Q1-2011Q4 1998Q1-2007Q2 2007Q3-2011Q4

h=1 h=2 h=4 h=1 h=2 h=4 h=1 h=2 h=4

SW-Reg vs SWFF-Reg 2.7* 2.0* 2.2* 2.0* 1.7 1.6 2.2* 1.4 2.4*

SW-Reg vs SW-DFM 1.7 2.5* 2.3* -1.2 1.1 1.4 3.5* 3.7* 10.2 *
SWFF-Reg vs SWFF-DFM 1.1 1.7 1.5 -1.5 0.4 0.2 2.3* 2.0* 2.3*

SW-DFM vs SWFF-DFM 0.4 0.6 0.3 0.8 0.8 -0.2 -0.1 0.2 0.3

SPF vs SW-Reg -2.6* -2.8* -1.8 -0.3 -2.1 -0.2 -3.1* -2.9* -4.4*
SPF vs SWFF-Reg -1.9 -2.2* -1.2 0.2 -2.1* 0.3 -2.4* -2.1* -2.1*
SPF vs SWFF-DFM -1.5 -1.7 -0.5 -1.1 -1.1 0.4 -1.1 -1.2 -1.3

Table D.4: Diebold-Mariano Test Statistics for Investment Growth

Entire Sample Pre-Recession Great Recession
1998Q1-2011Q4 1998Q1-2007Q2 2007Q3-2011Q4

h=1 h=2 h=4 h=1 h=2 h=4 h=1 h=2 h=4

SW-Reg vs SWFF-Reg 0.7 -0.1 -2.0* 0.7 -1.1 -1.3 0.6 0.1 -1.8

SW-Reg vs SW-DFM 2.8* 1.6 1.1 1.9 2.1* 1.3 2.3* 1.6 1.1
SWFF-Reg vs SWFF-DFM 2.1* 1.1 1.4 1.5 0.7 1.4 1.6 1.0 1.2

SW-DFM vs SWFF-DFM -0.3 0.7 0.8 -0.0 -1.6 -0.1 -0.2 1.1 0.9

SPF vs SW-Reg -3.0* -1.5 -0.9 -2.7* 0.8 0.5 -2.0* -2.0* -4.3*
SPF vs SWFF-Reg -2.7* -1.4 -1.4 -2.5* 0.2 -0.2 -1.6 -1.7 -3.1*
SPF vs SWFF-DFM -1.0 -0.2 0.3 -1.6 0.7 0.9 -0.2 -0.7 -0.1

Note: * denotes a DM statistic where the null hypothesis
of equal predictive accuracy is rejected at the 5% level
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Table D.5: Posterior Estimates of SWFF Model

Regular Estimation DSGE-DFM Estimation
Mean 5% 95% Mean 5% 95%

Structural Parameters
ψ 0.491 0.414 0.595 0.550 0.471 0.649
ιp 0.261 0.099 0.495 0.106 0.040 0.181
ιw 0.250 0.128 0.389 0.426 0.240 0.676
ξp 0.837 0.783 0.887 0.739 0.708 0.776
ξw 0.833 0.759 0.882 0.693 0.654 0.740
νl 1.782 1.127 2.545 1.244 0.785 1.849
σc 1.624 1.057 2.323 1.157 0.725 1.843
h 0.672 0.525 0.806 0.921 0.888 0.951
φ 0.467 0.219 0.760 0.176 0.052 0.380
S 2.716 1.471 4.138 3.267 3.074 3.394
χ 0.051 0.044 0.059 0.063 0.057 0.069

Policy Parameters
rπ1 2.196 1.832 2.602 1.539 1.397 1.706
ry1 0.336 0.235 0.443 0.131 0.070 0.209
rπ2 -0.216 -0.383 -0.056 -0.403 -0.536 -0.289
ry2 -0.103 -0.179 -0.024 -0.172 -0.252 -0.110
ρ 0.853 0.821 0.883 0.842 0.810 0.864

Exogenous Processes AR(1) Parameters
ρa 0.910 0.877 0.940 0.944 0.928 0.955
ρb 0.755 0.623 0.863 0.726 0.673 0.776
ρG 0.971 0.951 0.987 0.867 0.838 0.890
ρI 0.664 0.549 0.766 0.843 0.765 0.913
ρF 0.964 0.932 0.986 0.993 0.985 0.998
ρp 0.826 0.745 0.891 0.957 0.941 0.969
ρw 0.600 0.432 0.781 0.911 0.853 0.952

Exogenous Processes Standard Deviation Parameters
σa 0.487 0.431 0.550 0.428 0.343 0.500
σb 0.094 0.063 0.131 0.026 0.019 0.034
σG 0.327 0.290 0.372 0.230 0.179 0.289
σr 0.127 0.111 0.145 0.130 0.119 0.148
σI 0.955 0.801 1.129 0.241 0.192 0.308
σF 0.063 0.056 0.072 0.041 0.035 0.047
σp 0.061 0.047 0.078 0.066 0.052 0.081
σw 0.045 0.033 0.058 0.059 0.051 0.065

Note: Parameters estimated using data from 1984Q2-2008Q3
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Table D.6: Posterior Estimates of SW Model

Regular Estimation DSGE-DFM Estimation
Mean 5% 95% Mean 5% 95%

Structural Parameters
ψ 0.345 0.208 0.497 0.284 0.155 0.442
ιp 0.261 0.102 0.493 0.229 0.093 0.411
ιw 0.223 0.108 0.356 0.442 0.210 0.672
ξp 0.838 0.787 0.885 0.689 0.609 0.766
ξw 0.853 0.804 0.888 0.756 0.634 0.828
νl 2.009 1.307 2.880 1.363 0.729 2.225
σc 1.678 1.115 2.316 1.233 0.710 1.922
h 0.688 0.552 0.816 0.910 0.852 0.954
φ 0.445 0.201 0.750 0.128 0.036 0.254
S 5.348 3.841 6.898 5.243 4.560 6.104

Policy Parameters
rπ1 2.161 1.775 2.556 2.107 1.744 2.498
ry1 0.345 0.238 0.460 0.206 0.116 0.291
rπ2 -0.222 -0.383 -0.063 -0.231 -0.383 -0.085
ry2 -0.084 -0.166 -0.005 -0.166 -0.238 -0.093
ρ 0.867 0.835 0.896 0.831 0.796 0.860

Exogenous Processes AR(1) Parameters
ρa 0.911 0.879 0.939 0.945 0.901 0.979
ρb 0.772 0.654 0.864 0.755 0.671 0.821
ρG 0.974 0.956 0.987 0.968 0.949 0.989
ρI 0.710 0.593 0.813 0.848 0.785 0.906
ρp 0.827 0.748 0.890 0.600 0.418 0.734
ρw 0.524 0.381 0.684 0.588 0.415 0.886

Exogenous Processes Standard Deviation Parameters
σa 0.500 0.442 0.567 0.209 0.155 0.277
σb 0.085 0.056 0.120 0.036 0.023 0.053
σG 0.322 0.287 0.362 0.292 0.217 0.353
σr 0.125 0.110 0.142 0.119 0.104 0.139
σI 0.737 0.603 0.881 0.263 0.214 0.317
σq 0.104 0.039 0.244 0.583 0.467 0.713
σp 0.061 0.047 0.078 0.098 0.075 0.125
σw 0.048 0.036 0.060 0.106 0.070 0.150

Note: Parameters estimated using data from 1984Q2-2008Q3
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Figure D.1: Forecasted Paths of the Mid-1990’s
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